Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Chin Med ; 49(2): 237-268, 2021.
Article in English | MEDLINE | ID: covidwho-1365230

ABSTRACT

Intestinal flora is essential for maintaining host health and plays a unique role in transforming Traditional Chinese Medicine (TCM). TCM, as a bodyguard, has saved countless lives and maintained human health in the long history, especially in this COVID-19 pandemic. Pains of diseases have been removed from the effective TCM therapy, such as TCM preparation, moxibustion, and acupuncture. With the development of life science and technology, the wisdom and foresight of TCM has been more displayed. Furthermore, TCM has been also inherited and developed in innovation to better realize the modernization and globalization. Nowadays, intestinal flora transforming TCM and TCM targeted intestinal flora treating diseases have been important findings in life science. More and more TCM researches showed the significance of intestinal flora. Intestinal flora is also a way to study TCM to elucidate the profound theory of TCM. Processing, compatibility, and properties of TCM are well demonstrated by intestinal flora. Thus, it is no doubt that intestinal flora is a core in TCM study. The interaction between intestinal flora and TCM is so crucial for host health. Therefore, it is necessary to sum up the latest results in time. This paper systematically depicted the profile of TCM and the importance of intestinal flora in host. What is more, we comprehensively summarized and discussed the latest progress of the interplay between TCM and intestinal flora to better reveal the core connotation of TCM.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Dysbiosis/microbiology , Gastrointestinal Microbiome , Medicine, Chinese Traditional , Autoimmune Diseases/microbiology , Autoimmune Diseases/therapy , COVID-19 , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/therapy , Diabetes Mellitus/microbiology , Diabetes Mellitus/therapy , Electroacupuncture , Gastrointestinal Diseases/microbiology , Gastrointestinal Diseases/therapy , Humans , Metabolic Diseases/microbiology , Metabolic Diseases/therapy , Neoplasms/microbiology , Neoplasms/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/therapy , Obesity/microbiology , Obesity/therapy , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/therapy , SARS-CoV-2
3.
Microb Cell Fact ; 19(1): 217, 2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-945212

ABSTRACT

All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.


Subject(s)
COVID-19/therapy , Microbiota , Virus Diseases/pathology , COVID-19/pathology , COVID-19/virology , Humans , Lung/metabolism , Lung/microbiology , Neoplasms/metabolism , Neoplasms/microbiology , Neoplasms/pathology , Nervous System/metabolism , Probiotics/administration & dosage , SARS-CoV-2/isolation & purification , Virus Diseases/metabolism , Virus Diseases/microbiology
4.
J Immunother Cancer ; 8(2)2020 07.
Article in English | MEDLINE | ID: covidwho-650285

ABSTRACT

BACKGROUND: Pandemic COVID-19 by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) infection is facilitated by the ACE2 receptor and protease TMPRSS2. Modestly sized case series have described clinical factors associated with COVID-19, while ACE2 and TMPRSS2 expression analyses have been described in some cell types. Patients with cancer may have worse outcomes to COVID-19. METHODS: We performed an integrated study of ACE2 and TMPRSS2 gene expression across and within organ systems, by normal versus tumor, across several existing databases (The Cancer Genome Atlas, Census of Immune Single Cell Expression Atlas, The Human Cell Landscape, and more). We correlated gene expression with clinical factors (including but not limited to age, gender, race, body mass index, and smoking history), HLA genotype, immune gene expression patterns, cell subsets, and single-cell sequencing as well as commensal microbiome. RESULTS: Matched normal tissues generally display higher ACE2 and TMPRSS2 expression compared with cancer, with normal and tumor from digestive organs expressing the highest levels. No clinical factors were consistently identified to be significantly associated with gene expression levels though outlier organ systems were observed for some factors. Similarly, no HLA genotypes were consistently associated with gene expression levels. Strong correlations were observed between ACE2 expression levels and multiple immune gene signatures including interferon-stimulated genes and the T cell-inflamed phenotype as well as inverse associations with angiogenesis and transforming growth factor-ß signatures. ACE2 positively correlated with macrophage subsets across tumor types. TMPRSS2 was less associated with immune gene expression but was strongly associated with epithelial cell abundance. Single-cell sequencing analysis across nine independent studies demonstrated little to no ACE2 or TMPRSS2 expression in lymphocytes or macrophages. ACE2 and TMPRSS2 gene expression associated with commensal microbiota in matched normal tissues particularly from colorectal cancers, with distinct bacterial populations showing strong associations. CONCLUSIONS: We performed a large-scale integration of ACE2 and TMPRSS2 gene expression across clinical, genetic, and microbiome domains. We identify novel associations with the microbiota and confirm host immunity associations with gene expression. We suggest caution in interpretation regarding genetic associations with ACE2 expression suggested from smaller case series.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Neoplasms/immunology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Serine Endopeptidases/metabolism , Aged , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Datasets as Topic , Female , Gastrointestinal Microbiome/immunology , Gene Expression Regulation, Neoplastic/immunology , HLA Antigens/blood , HLA Antigens/immunology , Humans , Macrophages/immunology , Male , Middle Aged , Neoplasms/blood , Neoplasms/microbiology , Neoplasms/pathology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , RNA-Seq , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL